Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4^{\prime}-Vinyl-2,2': $\mathbf{6}^{\prime}, \mathbf{2}^{\prime \prime}$-terpyridine

Xiaoming Liu, Colin A. Kilner, Mark Thornton-Pett and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England Correspondence e-mail: m.a.halcrow@chem.leeds.ac.uk

Received 12 May 2000
Accepted 8 June 2000
The title compound, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}$, is a versatile precursor for polymeric terpyridine derivatives and their metal complexes. The molecule has transoid and near-coplanar pyridine rings. However, the vinyl group is forced out of the plane of the terpyridyl moiety by a close $\mathrm{H} \cdots \mathrm{H}$ contact.

Comment

4^{\prime}-Vinyl-2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine (Potts \& Konwar, 1991) is a versatile synthetic intermediate, which undergoes homo- or copolymerization reactions under free-radical or electrochemical conditions. The metal-containing polymers obtained in this way have potentially interesting photophysical or electrocatalytic properties (Potts et al., 1987; Guadalupe et al., 1988; Potts \& Usifer, 1988; Hurrell et al., 1989). We have obtained this compound, (I), as a synthetic intermediate during our studies of complexes of substituted meridional trisimine ligands (Solanki et al., 1998, 1999), and now report its crystal structure (Fig. 1).

(I)

As with other 2,2':6', $2^{\prime \prime}$-terpyridine derivatives (Constable et al., 1990, 1995; Constable, Cargill Thompson et al., 1992; Constable, Kahn et al., 1992; Bessel et al., 1992; Fallahpour et al., 1999), the three pyridine rings are transoid to each other and are nearly coplanar, the dihedral angles between the leastsquares planes of the three rings being N1-C6/C7-C12 = $7.1(2)^{\circ}$ and $\mathrm{N} 1-\mathrm{C} 6 / \mathrm{C} 13-\mathrm{C} 18=2.2(2)^{\circ}$. The torsion angles about the $\mathrm{C} 4-\mathrm{C} 19$ bond are $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 19-\mathrm{C} 20=$ $-155.28(17)^{\circ}$ and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 19-\mathrm{C} 20=24.4(3)^{\circ}$, so that the vinyl substituent is not coplanar with the central pyridine ring. This can be attributed to the effect of steric repulsions between the H atoms H 3 and $\mathrm{H} 20 B$, which lie only $2.35 \AA$ apart.

In the lattice, the molecules are arranged into $\pi-\pi$-stacked pairs related by inversion (symmetry code: $-x, 1-y,-z$).

Figure 1
Molecular structure showing 50\% probability displacement ellipsoids and the atom-numbering scheme employed. H atoms have arbitrary radii and those referred to in the text are labelled.

This leads to a $\pi-\pi$ interaction between pyridine rings N1-C6 and $\mathrm{C} 7-\mathrm{C} 12$ of one molecule, and $\mathrm{N} 1^{\prime}-\mathrm{C} 6^{\prime}$ and $\mathrm{C}^{\prime}-\mathrm{C} 12^{\prime}$ of a neighbouring molecule. The average interplanar spacing for this interaction is $3.42 \AA$, the dihedral angle between the leastsquares planes of the two rings is $7.1(2)^{\circ}$ and the offset of their centroids is $2.15 \AA$ (Hunter \& Sanders, 1990). These pairs of molecules are in turn arranged translationally into onedimensional chains parallel to the a axis, leading to a second $\pi-\pi$ interaction between $\mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 7^{\prime \prime}-\mathrm{C} 12^{\prime \prime}$ of molecules related by another inversion centre $(1-x, 1-y,-z)$. These rings are therefore strictly coplanar by symmetry, their interplanar spacing being $3.42 \AA$ while their centroids are offset by 1.43 (2) A. Adjacent $\pi-\pi$ chains are related by the operation of the c-glide $\left(-\frac{1}{2}-x,-\frac{1}{2}+y, z\right)$ and are rotated by $61.9(2)^{\circ}$ with respect to each other.

Experimental

The compound was isolated in moderate yield from the reaction of 4^{\prime} -(2-hydroxyethyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (Potts et al., 1987) with SeO_{2} in refluxing dioxane. The NMR spectra of the resultant white solid matched those previously reported for this compound (Potts et al., 1987). Crystals were grown from ether:hexane (1/1).

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}$
$M_{r}=259.30$
Orthorhombic, $P b c a$
$a=7.9476$ (2) \AA
$b=11.5546$ (3) A
$c=29.4257$ (8) \AA
$V=2702.20(12) \AA^{3}$
$Z=8$
$D_{x}=1.275 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD area-detector diffractometer
Area-detector scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.950, T_{\text {max }}=0.981$
14681 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 14681 reflections $\theta=2.77-27.49^{\circ}$ $\mu=0.078 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, colourless
$0.67 \times 0.50 \times 0.25 \mathrm{~mm}$

3093 independent reflections 2246 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=27.49^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 15$
$l=-38 \rightarrow 38$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.147$
$S=1.044$
3093 reflections
233 parameters
All H -atom parameters refined
All H atoms were located in a Fourier difference map, and were allowed to refine freely. The $\mathrm{C}-\mathrm{H}$ bond lengths are in the range 0.951 (16)-1.03 (2) Å.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1996); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

The authors acknowledge the Royal Society of London for a University Research Fellowship to MAH, and the EPSRC for a postdoctoral fellowship to XL and for the purchase of a diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1415). Services for accessing these data are described at the back of the journal.

References

Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. \& Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Constable, E. C., Cargill Thompson, A. M. W., Harveson, P., Macko, L. \& Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.
Constable, E. C., Cargill Thompson, A. M. W., Tocher, D. \& Daniels, M. A. M. (1992). New J. Chem. 16, 855-867.

Constable, E. C., Kahn, F. K., Raithby, P. R. \& Marquez, V. E. (1992). Acta Cryst. C48, 932-934.
Constable, E. C., Lewis, J., Liptrot, M. C. \& Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.
Fallahpour, R.-A., Neuburger, M. \& Zehnder, M. (1999). New J. Chem. 23, 5361.

Guadalupe, A. R., Usifer, D. A., Potts, K. T., Hurrell, H. C., Mogstad, A.-E. \& Abruna, H. D. (1988). J. Am. Chem. Soc. 110, 3462-3466.
Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
Hurrell, H. C., Mogstad, A.-L., Usifer, D. A., Potts, K. T. \& Abruna, H. D. (1989). Inorg. Chem. 28, 1080-1084.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1996). Methods Enzymol. 276, 307-326.
Potts, K. T. \& Konwar, D. (1991). J. Org. Chem. 56, 4815-4816.
Potts, K. T. \& Usifer, D. A. (1988). Macromolecules, 21, 1985-1991.
Potts, K. T., Usifer, D. A., Guadalupe, A. \& Abrams, H. D. (1987). J. Am. Chem. Soc. 109, 3961-3967.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Solanki, N. K., McInnes, E. J. L., Mabbs, F. E., Radojevic, S., McPartlin, M., Feeder, N., Davies, J. E. \& Halcrow, M. A. (1998). Angew. Chem. Int. Ed. Engl. 37, 2221-2223.
Solanki, N. K., Wheatley, A. E. H., Radojevic, S., McPartlin, M. \& Halcrow, M. A. (1999). J. Chem. Soc. Dalton Trans. pp. 521-523.

